Classifying data using near-term quantum devices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Quantum Supremacy in Near-Term Devices

Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, 4 John M. Martinis, 6 and Hartmut Neven Google Inc., Venice, CA 90291, USA Google Inc., 8002 Zurich, Switzerland QuAIL, NASA Ames Research Center, Moffett Field, CA 94035, USA SGT Inc., 7701 Greenbelt Rd., Suite 400, Greenbelt, MD 20770 Google Inc., Santa Barbara, CA 93117, USA Department of Physics, Univ...

متن کامل

Cs123a Term Project: Classifying Yelp Data

This paper describes our process of building a classifier for ratings data as assigned in spring semester of Machine Learning (CS123A), taught by Pengyu Hong at Brandeis University. The data set can be characterized by a large number of sparsely populated attributes (n=291) corresponding to ratings of 1 through 5 from the online ratings system, Yelp. To attack this problem we tried a wide varie...

متن کامل

Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices

Marcello Benedetti, 2, 3 John Realpe-Gómez, 4, 5 and Alejandro Perdomo-Ortiz 2, 3, ∗ Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, CA 94035, USA USRA Research Institute for Advanced Computer Science (RIACS), Mountain View CA 94043, USA Department of Computer Science, University College London, WC1E 6BT London, UK SGT Inc., Greenbelt, MD 20770, USA Instituto de ...

متن کامل

High performance of the support vector machine in classifying hyperspectral data using a limited dataset

To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...

متن کامل

Classifying Spending Behavior using Socio-Mobile Data

Human spending behavior is essentially social. This work motivates and grounds the use of mobile phone based social interaction features for classifying spending behavior. Using a data set involving 52 adults (26 couples) living in a community for over a year, we find that social behavior measured via face-to-face interaction, call, and SMS logs, can be used to predict the spending behavior for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Quantum Information

سال: 2018

ISSN: 0219-7499,1793-6918

DOI: 10.1142/s0219749918400014